\(\int \frac {\cos (c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx\) [822]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 113 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx=\frac {2 A \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d} \]

[Out]

2/3*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d
/(b*cos(d*x+c))^(1/2)+2/3*B*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/b/d+2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1
/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {16, 2827, 2721, 2719, 2715, 2720} \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx=\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}+\frac {2 B \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}} \]

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/Sqrt[b*Cos[c + d*x]],x]

[Out]

(2*A*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b*d*Sqrt[Cos[c + d*x]]) + (2*B*Sqrt[Cos[c + d*x]]*Ellipt
icF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*B*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*b*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \, dx}{b} \\ & = \frac {A \int \sqrt {b \cos (c+d x)} \, dx}{b}+\frac {B \int (b \cos (c+d x))^{3/2} \, dx}{b^2} \\ & = \frac {2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {1}{3} B \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx+\frac {\left (A \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{b \sqrt {\cos (c+d x)}} \\ & = \frac {2 A \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 \sqrt {b \cos (c+d x)}} \\ & = \frac {2 A \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.69 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx=\frac {2 \sqrt {b \cos (c+d x)} \left (3 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B \left (\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} \sin (c+d x)\right )\right )}{3 b d \sqrt {\cos (c+d x)}} \]

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/Sqrt[b*Cos[c + d*x]],x]

[Out]

(2*Sqrt[b*Cos[c + d*x]]*(3*A*EllipticE[(c + d*x)/2, 2] + B*(EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*Sin
[c + d*x])))/(3*b*d*Sqrt[Cos[c + d*x]])

Maple [A] (verified)

Time = 5.13 (sec) , antiderivative size = 237, normalized size of antiderivative = 2.10

method result size
default \(\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(237\)
parts \(\frac {2 A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}-\frac {2 B \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(330\)

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c))/(cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+3*
A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*cos(
1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(
cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*c
os(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.26 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx=\frac {-i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} A \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} A \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} B \sin \left (d x + c\right )}{3 \, b d} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/3*(-I*sqrt(2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*B*sqrt(b)*weie
rstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*A*sqrt(b)*weierstrassZeta(-4, 0, weierstra
ssPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*A*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPI
nverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*sqrt(b*cos(d*x + c))*B*sin(d*x + c))/(b*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)/sqrt(b*cos(d*x + c)), x)

Giac [F]

\[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)/sqrt(b*cos(d*x + c)), x)

Mupad [B] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.83 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx=\frac {2\,B\,\sin \left (c+d\,x\right )\,\sqrt {b\,\cos \left (c+d\,x\right )}}{3\,b\,d}+\frac {2\,A\,\sqrt {\cos \left (c+d\,x\right )}\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d\,\sqrt {b\,\cos \left (c+d\,x\right )}}+\frac {2\,B\,\sqrt {\cos \left (c+d\,x\right )}\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d\,\sqrt {b\,\cos \left (c+d\,x\right )}} \]

[In]

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(b*cos(c + d*x))^(1/2),x)

[Out]

(2*B*sin(c + d*x)*(b*cos(c + d*x))^(1/2))/(3*b*d) + (2*A*cos(c + d*x)^(1/2)*ellipticE(c/2 + (d*x)/2, 2))/(d*(b
*cos(c + d*x))^(1/2)) + (2*B*cos(c + d*x)^(1/2)*ellipticF(c/2 + (d*x)/2, 2))/(3*d*(b*cos(c + d*x))^(1/2))